If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3p2 + -7p + 3 = 0 Reorder the terms: 3 + -7p + 3p2 = 0 Solving 3 + -7p + 3p2 = 0 Solving for variable 'p'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1 + -2.333333333p + p2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + -2.333333333p + -1 + p2 = 0 + -1 Reorder the terms: 1 + -1 + -2.333333333p + p2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -2.333333333p + p2 = 0 + -1 -2.333333333p + p2 = 0 + -1 Combine like terms: 0 + -1 = -1 -2.333333333p + p2 = -1 The p term is -2.333333333p. Take half its coefficient (-1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. -2.333333333p + 1.361111112 + p2 = -1 + 1.361111112 Reorder the terms: 1.361111112 + -2.333333333p + p2 = -1 + 1.361111112 Combine like terms: -1 + 1.361111112 = 0.361111112 1.361111112 + -2.333333333p + p2 = 0.361111112 Factor a perfect square on the left side: (p + -1.166666667)(p + -1.166666667) = 0.361111112 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (p + -1.166666667) equal to 0.600925213 and -0.600925213.Subproblem 1
p + -1.166666667 = 0.600925213 Simplifying p + -1.166666667 = 0.600925213 Reorder the terms: -1.166666667 + p = 0.600925213 Solving -1.166666667 + p = 0.600925213 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + p = 0.600925213 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + p = 0.600925213 + 1.166666667 p = 0.600925213 + 1.166666667 Combine like terms: 0.600925213 + 1.166666667 = 1.76759188 p = 1.76759188 Simplifying p = 1.76759188Subproblem 2
p + -1.166666667 = -0.600925213 Simplifying p + -1.166666667 = -0.600925213 Reorder the terms: -1.166666667 + p = -0.600925213 Solving -1.166666667 + p = -0.600925213 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + p = -0.600925213 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + p = -0.600925213 + 1.166666667 p = -0.600925213 + 1.166666667 Combine like terms: -0.600925213 + 1.166666667 = 0.565741454 p = 0.565741454 Simplifying p = 0.565741454Solution
The solution to the problem is based on the solutions from the subproblems. p = {1.76759188, 0.565741454}
| 2+3y+10y-14= | | 9+m=-4 | | 900= | | 20n-16n=20 | | -6b+9-2b=41 | | 7x^2+5x-174=0 | | 16x^2=1249 | | 3x^2+7= | | 4x+50+7x-42=180 | | 16x^2=1259 | | .4x-1.2=0.15x+.8 | | 2y-2+4=5 | | -41=-6+5x | | 5s^2+4s-2=0 | | -17-h=-12 | | -3(10)+1= | | 5s^2-40s=0 | | 4x-4y=56 | | 2k^2+8k+8=0 | | x+9=-81 | | 4(4x-7)-5=4(x-2)+35 | | 200x+y=120 | | 6f^2+8f-4=0 | | d=(10) | | 3/2(2x-6)=3x-9 | | -3(6x-3)= | | 3e^5x=1149 | | 7k^2-41k-56=0 | | 8(4x-6)+2=16x-16 | | 16+6y-5y=8 | | -1=2x^3-6x^2+5x | | 3x^4+8x^3+6x^2+3x-2=0 |